2,537 research outputs found

    Diagonals of rational functions, pullbacked 2F1 hypergeometric functions and modular forms (unabrigded version)

    Full text link
    We recall that diagonals of rational functions naturally occur in lattice statistical mechanics and enumerative combinatorics. We find that a seven-parameter rational function of three variables with a numerator equal to one (reciprocal of a polynomial of degree two at most) can be expressed as a pullbacked 2F1 hypergeometric function. This result can be seen as the simplest non-trivial family of diagonals of rational functions. We focus on some subcases such that the diagonals of the corresponding rational functions can be written as a pullbacked 2F1 hypergeometric function with two possible rational functions pullbacks algebraically related by modular equations, thus showing explicitely that the diagonal is a modular form. We then generalise this result to eight, nine and ten parameters families adding some selected cubic terms at the denominator of the rational function defining the diagonal. We finally show that each of these previous rational functions yields an infinite number of rational functions whose diagonals are also pullbacked 2F1 hypergeometric functions and modular forms.Comment: 39 page

    Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals

    Full text link
    Lattice statistical mechanics, often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in a general mathematical framework, be too complex, or could not be defined. Considering several Picard-Fuchs systems of two-variables "above" Calabi-Yau ODEs, associated with double hypergeometric series, we show that holonomic functions are actually a good framework for actually finding the singular manifolds. We, then, analyse the singular algebraic varieties of the n-fold integrals χ(n) \chi^{(n)}, corresponding to the decomposition of the magnetic susceptibility of the anisotropic square Ising model. We revisit a set of Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find a first set of non-Nickelian singularities for χ(3) \chi^{(3)} and χ(4) \chi^{(4)}, that also turns out to be rational or ellipic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model. We address, from a birational viewpoint, the emergence of families of elliptic curves, and of Calabi-Yau manifolds on such problems. We discuss the accumulation of these singular curves for the non-holonomic anisotropic full susceptibility.Comment: 36 page

    A comment on free-fermion conditions for lattice models in two and more dimensions

    Get PDF
    We analyze free-fermion conditions on vertex models. We show --by examining examples of vertex models on square, triangular, and cubic lattices-- how they amount to degeneration conditions for known symmetries of the Boltzmann weights, and propose a general scheme for such a process in two and more dimensions.Comment: 12 pages, plain Late

    On Christol's conjecture

    Full text link
    We show that the unresolved examples of Christol's conjecture \, _3F_{2}\left([2/9,5/9,8/9],[2/3,1],x\right) and 3F2([1/9,4/9,7/9],[1/3,1],x)_3F_{2}\left([1/9,4/9,7/9],[1/3,1],x\right), are indeed diagonals of rational functions. We also show that other \, _3F_2 and \, _4F_3 unresolved examples of Christol's conjecture are diagonals of rational functions. Finally we give two arguments that show that it is likely that the \, _3F_2([1/9, 4/9, 5/9], \, [1/3,1], \, 27 \cdot x) function is a diagonal of a rational function.Comment: 13 page

    Random Matrix Theory and Classical Statistical Mechanics. I. Vertex Models

    Full text link
    A connection between integrability properties and general statistical properties of the spectra of symmetric transfer matrices of the asymmetric eight-vertex model is studied using random matrix theory (eigenvalue spacing distribution and spectral rigidity). For Yang-Baxter integrable cases, including free-fermion solutions, we have found a Poissonian behavior, whereas level repulsion close to the Wigner distribution is found for non-integrable models. For the asymmetric eight-vertex model, however, the level repulsion can also disappearand the Poisson distribution be recovered on (non Yang--Baxter integrable) algebraic varieties, the so-called disorder varieties. We also present an infinite set of algebraic varieties which are stable under the action of an infinite discrete symmetry group of the parameter space. These varieties are possible loci for free parafermions. Using our numerical criterion we have tested the generic calculability of the model on these algebraic varieties.Comment: 25 pages, 7 PostScript Figure

    Factorization of Ising correlations C(M,N) for ν=k \nu= \, -k and M+N odd, MNM \le N, T<TcT < T_c and their lambda extensions

    Full text link
    We study the factorizations of Ising low-temperature correlations C(M,N) for ν=k\nu=-k and M+N odd, MNM \le N, for both the cases M0M\neq 0 where there are two factors, and M=0M=0 where there are four factors. We find that the two factors for M0 M \neq 0 satisfy the same non-linear differential equation and, similarly, for M=0 the four factors each satisfy Okamoto sigma-form of Painlev\'e VI equations with the same Okamoto parameters. Using a Landen transformation we show, for M0M\neq 0, that the previous non-linear differential equation can actually be reduced to an Okamoto sigma-form of Painlev\'e VI equation. For both the two and four factor case, we find that there is a one parameter family of boundary conditions on the Okamoto sigma-form of Painlev\'e VI equations which generalizes the factorization of the correlations C(M,N) to an additive decomposition of the corresponding sigma's solutions of the Okamoto sigma-form of Painlev\'e VI equation which we call lambda extensions. At a special value of the parameter, the lambda-extensions of the factors of C(M,N) reduce to homogeneous polynomials in the complete elliptic functions of the first and second kind. We also generalize some Tracy-Widom (Painlev\'e V) relations between the sum and difference of sigma's to this Painlev\'e VI framework.Comment: 45 page

    Heun functions and diagonals of rational functions (unabridged version)

    Get PDF
    International audienceWe provide a set of diagonals of simple rational functions of four variables that are seen to be squares of Heun functions. Each time, these Heun functions, obtained by creative telescoping, turn out to be pullbacked 2 F 1 hypergeometric functions and in fact classical modular forms. We even obtained Heun functions that are automorphic forms associated with Shimura curves as solutions of telescopers of rational functions

    Diagonals of rational functions, pullbacked 2 F 1 hypergeometric functions and modular forms (unabrigded version)

    Get PDF
    International audienceWe recall that diagonals of rational functions naturally occur in lattice statistical mechanics and enumerative combinatorics. We find that a seven-parameter rational function of three variables with a numerator equal to one (reciprocal of a polynomial of degree two at most) can be expressed as a pullbacked 2 F 1 hypergeometric function. This result can be seen as the simplest non-trivial family of diagonals of rational functions. We focus on some subcases such that the diagonals of the corresponding rational functions can be written as a pullbacked 2 F 1 hypergeometric function with two possible rational functions pullbacks algebraically related by modular equations, thus showing explicitely that the diagonal is a modular form. We then generalise this result to eight, nine and ten parameters families adding some selected cubic terms at the denominator of the rational function defining the diagonal. We finally show that each of these previous rational functions yields an infinite number of rational functions whose diagonals are also pullbacked 2 F 1 hypergeometric functions and modular forms
    corecore